

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration

NATIONAL MARINE FISHERIES SERVICE Northwest Region 7600 Sand Point Way N.E., Bldg. 1 Seattle, WA 98115

Refer to: 2002/00857

September 19, 2002

Mr. Lawrence C. Evans U.S. Army Corps of Engineers Attn: Dan Gresham Portland District, CENWP-CO-GP P.O. Box 2946 Portland, Oregon 97208-2946

Re: Endangered Species Action Section 7 Formal Consultation and Magnuson-Stevens Act Essential Fish Habitat Consultation on the Fish Passage Improvement Project by Multnomah County Transportation Division, Beaver Creek, Sandy River, Multnomah County, Oregon (Corps No. 2002-00450).

Dear Mr. Evans:

Enclosed is a biological opinion (Opinion) prepared by the National Marine Fisheries Service (NOAA Fisheries) pursuant to section 7 of the Endangered Species Act (ESA) for the Fish Passage Improvement Project by Multnomah County Transportation Division in Beaver Creek, a tributary to the Sandy River in Multnomah County, Oregon. NOAA Fisheries concludes in this Opinion that the proposed action is not likely to jeopardize Lower Columbia River chinook salmon (*Oncorhynchus tshawytscha*) or Lower Columbia River steelhead (*O. mykiss*). Pursuant to section 7 of the ESA, NOAA Fisheries has included reasonable and prudent measures with non-discretionary terms and conditions that NOAA Fisheries believes are necessary and appropriate to minimize the potential for incidental take associated with this project.

This Opinion also serves as consultation on essential fish habitat (EFH) pursuant to section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act (MSA) and its implementing regulations (50 CFR Part 600). NOAA Fisheries concluded that the proposed action may adversely affect designated EFH for chinook and coho salmon. As required by section 305(b)(4)(A) of the MSA, included are conservation recommendations that NOAA Fisheries believes will avoid, minimize, mitigate, or otherwise offset adverse effects on EFH resulting from the proposed action. As described in the enclosed consultation, 305(b)(4)(B) of the MSA requires that a Federal action agency must provide a detailed response in writing within 30 days of receiving an EFH conservation recommendation.

Questions regarding this letter should be directed to Christy Fellas, of my staff, in the Oregon Habitat Branch at 503.231.2307.

Sincerely,

F.1 Michael R Coure
D. Robert Lohn

Regional Administrator

ce: Diana Santry, Multnomah County Jane Kelly, ODFW Fish Passage Engineer Jim Grimes, ODFW District Biologist Melissa Jundt, NOAA Fisheries Engineer

Endangered Species Act - Section 7 Consultation

&

Magnuson-Stevens Act Essential Fish Habitat Consultation

BIOLOGICAL OPINION

Fish Passage Improvement Project by Multnomah County Transportation Division, Beaver Creek, Sandy River, Multnomah County, Oregon (Corps No. 2001-00450).

Agency: U.S. Army Corps of Engineers

Consultation

Conducted By: NOAA Fisheries,

Northwest Region

Date Issued: September 19, 2002

Issued by: $\frac{\sqrt{D}}{D}$. Robert Lohn

Regional Administrator

Refer to: 2002/00857

TABLE OF CONTENTS

1.	ENDANGERED SPECIES ACT		
	1.1	Background	<u>1</u>
	1.2	Proposed Action	<u>1</u>
	1.3	Biological Information	
	1.4	Evaluating Proposed Actions	<u>2</u>
		1.4.1 Biological Requirements	<u>2</u>
		1.4.2 Environmental Baseline	
	1.5	Analysis of Effects	<u>4</u>
		1.5.1 Effects of Proposed Action	
		1.5.2 Cumulative Effects	<u>6</u>
	1.6	Conclusion	<u>6</u>
	1.7	Reinitiation of Consultation	<u>7</u>
2.	2. INCIDENTAL TAKE STATEMENT		<u>7</u>
	2.1	Amount or Extent of Take	
	2.2	Reasonable and Prudent Measures	<u>8</u>
	2.3	Terms and Conditions	<u>8</u>
3.	. MAGNUSON-STEVENS ACT		<u>15</u>
	3.1	Magnuson-Stevens Fishery Conservation and Management Act	
	3.2	Identification of EFH	<u>16</u>
	3.3	Proposed Action	<u>16</u>
	3.4	Effects of Proposed Action	
	3.5	Conclusion	<u>17</u>
	3.6	EFH Conservation Recommendations	<u>17</u>
	3.7	Statutory Response Requirement	<u>17</u>
	3.8	Supplemental Consultation	
1	ITEDAT	TURE CITED	10
┰.		[UNI) VITID	10

1. ENDANGERED SPECIES ACT

1.1 Background

On July 17, 2002, the National Marine Fisheries Service (NOAA Fisheries) received a letter from the Corps of Engineers (COE) requesting formal consultation on the issuance of a permit to Multnomah County for a fish passage improvement project in Beaver Creek, a tributary to the Sandy River in Multnomah County, Oregon. Based on staff discussions, the COE and NOAA Fisheries determined that Lower Columbia River steelhead (*Oncorhynchus mykiss*) and Lower Columbia River chinook salmon (*O. tshawytscha*) may occur within the project area and that the proposed project is "likely to adversely affect" (LAA) the subject listed species. NOAA Fisheries responded with a request for additional information dated August 8, 2001. The additional information was submitted to NOAA Fisheries on September 3, 2002. Biological references and dates of listing status can be found in the following Federal Register notices: 63 FR 13347 dated March 19, 1998, 64 Fr 14308 dated March 24, 1999, and 65 FR 42422 dated July 10, 2000.

NOAA Fisheries prepared this Opinion to address affects of the proposed project on these species. The objective of this Opinion is to determine whether the subject action is likely to jeopardize the continued existence of the above listed species, or destroy or adversely modify critical habitat.

1.2 Proposed Action

The proposed action includes the installation of a functional fish passage system and restoration of native vegetation in Beaver Creek, located on the north side of Stark Street in the city of Troutdale, Multnomah County, Oregon. The existing passage structure was built around 1920, and is blocking passage for listed salmonids in Beaver Creek. The proposed project would install a combination of new precast walls used as weirs, a new precast bottomless chamber and baffles on the culvert floor. The weirs and baffles will be used to eliminate sheet flow, lower velocity, and provide pools to achieve desired flow and pool depth. These improvements are intended to provide passage for fish in all but the highest peak flows.

The following best management practices will be implemented as part of the project:

- No equipment will be operated within Beaver Creek
- Equipment will be staged away from Beaver Creek
- All concrete structures are pre-formed and cured
- An erosion and pollution control plan will be implemented during construction
- Dewatering will be done with a proper pump and fish screen
- Storm drain inlet will be protected using a sediment filter and trap

The applicant proposes to construct the project after the in-water work window of July 15 to August 31. The project will be constructed in September and work will cease prior to the onset

of fall rains. In addition to the construction of fish passage components, approximately 0.5 acres of Himalayan blackberries will be removed and replaced with native vegetation.

1.3 Biological Information

Based on typical migration timing, NOAA Fisheries expects that adult chinook and steelhead may be present in the action area during construction. The action area is defined by NOAA Fisheries regulations (50 CFR 402) as "all areas to be affected directly or indirectly by the federal action, and not merely the immediate area involved in the action." For the proposed project the action area is defined as the substrate, water, and bank immediately adjacent to the existing passage structure in Beaver Creek, and downstream to the limits of any visible turbidity resulting from construction activities. Beaver Creek, within the action area, serves as a spawning and rearing area, and a migration corridor for ESA-listed Lower Columbia River steelhead and chinook salmon under consideration in this Opinion. The essential habitat features necessary to suport spawning, rearing and migration that this proposed project may affect are: Substrate, water quality (turbidity), riparian vegetation and safe passage conditions.

1.4 Evaluating Proposed Actions

The standards for determining jeopardy are set forth in section 7(a)(2) of the ESA as defined by 50 CFR Part 402 (the consultation regulations). In conducting analyses of habitat-altering actions under section 7 of the ESA, NMFS uses the following steps: (1) Consider the status and biological requirements of the species; (2) evaluate the relevance of the environmental baseline in the action area to the species' current status; (3) determine the effects of the proposed or continuing action on the species; (4) consider cumulative effects; and (5) determine whether the proposed action, in light of the above factors, is likely to appreciably reduce the likelihood of species survival in the wild. In completing this step of the analysis, NMFS determines whether the action under consultation, together with all cumulative effects when added to the environmental baseline, is likely to jeopardize the continued existence of the listed species. If NMFS finds that the action is likely to jeopardize the listed species, NMFS must identify reasonable and prudent alternatives for the action.

1.4.1 Biological Requirements

The standards for determining jeopardy are set forth in section 7(a)(2) of the ESA as defined by 50 CFR Part 402 (the consultation regulations). In conducting analyses of habitat-altering actions under section 7 of the ESA, NOAA Fisheries uses the following steps: (1) Consider the status and biological requirements of the species; (2) evaluate the relevance of the environmental baseline in the action area to the species' current status; (3) determine the effects of the proposed or continuing action on the species; (4) consider cumulative effects; and (5) determine whether the proposed action, in light of the above factors, is likely to appreciably reduce the likelihood of species survival in the wild. In completing this step of the analysis, NOAA Fisheries determines whether the action under consultation, together with all cumulative effects when added to the environmental baseline, is likely to jeopardize the continued existence of the listed species. If

NOAA Fisheries finds that the action is likely to jeopardize the listed species, NOAA Fisheries must identify reasonable and prudent alternatives for the action.

1.4.2 Environmental Baseline

The most recent evaluation of the environmental baseline for the Columbia River is part of the NOAA Fisheries's Opinion for the Federal Columbia River Power System (FCRPS) issued in December 2000. This Opinion assessed the entire Columbia River system below Chief Joseph Dam, and downstream to the farthest point (the Columbia River estuary and nearshore ocean environment) at which listed salmonids are influenced. A detailed evaluation of the environmental baseline of the Columbia River basin can be found in the FCRPS Opinion (NMFS 2000).

The quality and quantity of freshwater habitats in much of the Columbia River basin have declined dramatically in the last 150 years. Forestry, farming, grazing, road construction, hydrosystem development, mining, and urbanization have radically changed the historical habitat conditions of the basin. Depending on the species, they spend from a few days to one or two years in the Columbia River and its estuary before migrating out to the ocean and another one to four years in the ocean before returning as adults to spawn in their natal streams.

Water quality in streams throughout the Columbia River basin has been degraded by human activities such as dams and diversion structures, water withdrawals, farming and grazing, road construction, timber harvest activities, mining activities, and urbanization. Tributary water quality problems contribute to poor water quality where sediment and contaminants from the tributaries settle in mainstem reaches and the estuary. Temperature alterations also affect salmonid metabolism, growth rate, and disease resistance, as well as the timing of adult migrations, fry emergence, and smoltification. Many factors can cause high stream temperatures, but they are primarily related to land-use practices rather than point-source discharges. Loss of wetlands and increases in groundwater withdrawals have contributed to lower base-stream flows, which in turn contribute to temperature increases. Channel widening and land uses that create shallower streams also cause temperature increases.

Pollutants also degrade water quality. Salmon require clean gravel for successful spawning, egg incubation, and emergence of fry. Fine sediments clog the spaces between gravel and restrict the flow of oxygen-rich water to the incubating eggs. Excess nutrients, low levels of dissolved oxygen, heavy metals, and changes in pH also directly affect the water quality for salmon and steelhead.

Water quantity problems are also a significant cause of habitat degradation and reduced fish production. Withdrawing water for irrigation, urban, and other uses can increase temperatures, smolt travel time, and sedimentation. Return water from irrigated fields can introduce nutrients and pesticides into streams and rivers. On a larger landscape scale, human activities have affected the timing and amount of peak water runoff from rain and snowmelt. Many riparian areas, flood plains, and wetlands that once stored water during periods of high runoff have been

developed. Urbanization paves over or compacts soil and increases the amount and pattern of runoff reaching rivers and streams.

The Sandy River and many of its tributaries originate high on the slopes of Mount Hood. The Sandy River flows about 56 miles in a northwesterly direction from its headwaters on Mt. Hood and joins the Columbia River near Troutdale, at Columbia River mile (RM) 120.5. The project area in Beaver Creek, a tributary to the Sandy River, is currently degraded due to surrounding urban and agricultural land use. At the project site, the existing box culvert was built in 1920 and has a large drop that prevents fish from reaching habitat in Beaver Creek above the Stark Street crossing. The project area is lacking native riparian vegetation and complexity of habitat, including large wood.

Based on the best available information regarding the current status of the listed species range-wide, the population status, trends, genetics, and the poor environmental baseline conditions within the action areas, NOAA Fisheries concludes that the biological requirements of these species are not currently being met. Degraded habitat resulting from agricultural practices, forestry practices, road building, and residential construction indicate many aquatic habitat indicators are not properly functioning within the Columbia River basin. Actions that do not maintain or restore properly functioning aquatic habitat conditions would be likely to jeopardize the continued existence of these species.

1.5 Analysis of Effects

1.5.1 Effects of Proposed Action

Creeks and rivers are dynamic systems that naturally alter their courses in response to many physical processes. Roadways and other structures constructed along waterways are subject to flooding and undercutting as a result of these natural changes in the stream course. Structural hardening of embankments is the traditional means of protecting these structures along waterways. The structural hardening also results in impacts to the waterway.

Fish habitats are enhanced by the diversity of habitats at the land-water interface and adjacent bank (USACE 1977). Streamside vegetation provides shade that reduces water temperature. Overhanging branches provide cover from predators. Insects and other invertebrates that fall from overhanging branches may be preyed upon by fish, or provide food sources for other prey organisms. Immersed vegetation, logs, and root wads provide points of attachment for aquatic prey organisms, shelter from swift currents during high flow events, retain bedload materials, and reduce flow velocity.

Potential impacts to listed salmonids from the proposed action include both direct and indirect effects. Potential direct effects include mortality from exposure to suspended sediments (turbidity) and capture and handling from work area isolation. Potential indirect effects include behavioral changes resulting from elevated turbidity levels (Sigler *et al.* 1984, Berg and Northcote 1985, Whitman *et al.* 1982, Gregory 1988), during construction activities.

Suspended sediment and turbidity influences on fish reported in the literature range from beneficial to detrimental. Elevated total suspended solids (TSS) conditions have been reported to enhance cover conditions, reduce piscivorus fish/bird predation rates, and improve survival. Elevated TSS conditions have also been reported to cause physiological stress, reduce growth, and adversely affect survival. Of key importance in considering the detrimental effects of TSS on fish are the frequency and the duration of the exposure, not just the TSS concentration.

Behavioral avoidance of turbid waters may be one of the most important effects of suspended sediments (DeVore *et al.* 1980, Birtwell *et al.* 1984, Scannell 1988). Salmonids have been observed to move laterally and downstream to avoid turbid plumes (McLeay *et al.* 1984, 1987, Sigler *et al.* 1984, Lloyd 1987, Scannell 1988, Servizi and Martens 1991). Juvenile salmonids tend to avoid streams that are chronically turbid, such as glacial streams or those disturbed by human activities, unless the fish need to traverse these streams along migration routes (Lloyd *et al.* 1987). In addition, a potentially positive reported effect is providing refuge and cover from predation (Gregory and Levings 1988).

Fish that remain in turbid, or elevated TSS, waters experience a reduction in predation from piscivorus fish and birds (Gregory and Levings 1998). In systems with intense predation pressure, this provides a beneficial trade off (*e.g.*, enhanced survival) to the cost of potential physical effects (*e.g.*, reduced growth). Turbidity levels of about 23 Nephalometric Turbidity Units (NTU) have been found to minimize bird and fish predation risks (Gregory 1993). Exposure duration is a critical determinant of the occurrence and importance of physical or behavioral effects (Newcombe and MacDonald 1991). Salmonids have evolved in systems that periodically experience short-term pulses (days to weeks) of high suspended sediment loads, often associated with flood events, and are adapted to such high pulse exposures. Adult and larger juvenile salmonids may be little affected by the high concentrations of suspended sediments that occur during storm and snowmelt runoff episodes (Bjornn and Reiser 1991). However, research shows that chronic exposure can cause physiological stress responses that can increase maintenance energy and reduce feeding and growth (Redding *et al.* 1987, Lloyd 1987, Servizi and Martens 1991).

The most lethal biological effects of the proposed action on individual listed salmon will likely be caused by the isolation of in-water areas. Although work area isolation is itself a conservation measure intended to reduce the adverse effects of erosion and runoff on the population, any individual fish present in the work isolation area will be captured and released. Capturing and handling fish causes them stress though they typically recover fairly rapidly from the process and therefore the overall effects of the procedure are generally short-lived (NMFS 2002a). The primary contributing factors to stress and death from handling are differences in water temperatures (between the river and wherever the fish are held), dissolved oxygen concentrations, the amount of time that fish are held out of the water, and physical trauma. Stress on salmonids increases rapidly from handling if the water temperature exceeds 18°C or dissolved oxygen is below saturation. These biological effects will be minimized or avoided by the following conservation measure:

Any listed fish that may be trapped within the isolated work area will be captured and
released using methods approved by NOAA Fisheries, including supervision by a fishery
biologist experienced with work area isolation and competent to ensure the safe handling
of all ESA-listed fish.

Although there are associated risk to salmonids during the construction of the proposed project, the end result will be improved fish passage for listed salmonids in Beaver Creek. The current facility substantially inhibits fish passage. However, the proposed design has uncertainties associated with its function and therefore, NOAA Fisheries considers the proposed structure to be an experimental design. In order to fully analyze the effects of the proposed structure, additional monitoring of the structure and adjacent habitat area will be required. If this experimental structure is determined by NOAA Fisheries to not be properly functioning (*i.e.* allowing fish passage through the structure) the applicant will be required to make necessary alterations to the structure.

1.5.2 Cumulative Effects

Cumulative effects are defined in 50 CFR 402.02 as "those effects of future state or private activities, not involving Federal activities, that are reasonably certain to occur within the action area of the federal action subject to consultation." Other activities within the watershed have the potential to impact fish and habitat within the action area. Future Federal actions, including the ongoing operation of land management activities and highway construction that have been reviewed through separate section 7 consultation processes.

NOAA Fisheries is not aware of any specific future non-federal activities within the action area that would cause greater impacts to listed species than presently occurs. However, development of structures, hardening of banks and vegetation clearing along the river is likely to continue. NOAA Fisheries assumes that future private and state actions will continue at similar intensities as in recent years.

1.6 Conclusion

After reviewing the current status of listed species, the environmental baseline for the action area, the effects of the proposed action, and the cumulative effects, NOAA Fisheries has determined that the Fish Passage Improvement Project by Multnomah County Transportation Division, as proposed, is not likely to jeopardize the continued existence of listed species. This finding is based, in part, on incorporation of the project design criteria into the proposed project design (*i.e.* establishment of vegetation to reduce bank erosion, and equipment working from the bank), but also on the following considerations: (1) Construction of the project should improve fish passage in Beaver Creek and open up habitat above the structure; (2) work will be conducted during low water to decrease the likelihood of encountering fish during construction; and (3) revegetation of the banks will result in long-term improvement of riparian resources. Thus, the proposed action is not expected to impair properly functioning habitats, appreciably reduce the functioning of already impaired habitats, or retard the long-term progress of impaired habitats

toward proper functioning condition essential to the long-term survival and recovery at the population or ESU level.

1.7 Reinitiation of Consultation

This concludes formal consultation on this action in accordance with 50 CFR 402.14(b)(1). Reinitiation of consultation is required: (1) If the amount or extent of incidental take is exceeded; (2) the action is modified in a way that causes an effect on the listed species or critical habitat that was not previously considered in the BA and this Opinion; (3) new information or project monitoring reveals effects of the action that may affect the listed species or critical habitat in a way not previously considered; or (4) a new species is listed or critical habitat is designated that may be affected by the action (50 CFR 402.16).

2. INCIDENTAL TAKE STATEMENT

Section 9 and rules promulgated under section 4(d) of the ESA prohibit any taking (harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, collect, or attempt to engage in any such conduct) of listed species without a specific permit or exemption. "Harm" is further defined to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing behavioral patterns such as breeding, feeding, and sheltering. "Harass" is defined as actions that create the likelihood of injuring listed species by annoying it to such an extent as to significantly alter normal behavior patterns which include, but are not limited to, breeding, feeding, and sheltering. "Incidental take" is take of listed animal species that results from, but is not the purpose of, the Federal agency or the applicant carrying out an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to, and not intended as part of, the agency action is not considered prohibited taking provided that such taking is in compliance with the terms and conditions of this incidental take statement.

2.1 Amount or Extent of Take

NOAA Fisheries anticipates that the action covered by this Opinion is reasonably certain to result in the incidental take resulting from the disturbance and displacement from the use of equipment, temporary dewatering of the creek and temporary displacement of individuals due to elevated turbidity levels. Effects of actions such as these are largely unquantifiable in the short term. The effects of these activities on population levels are also largely unquantifiable and not expected to be measurable in the long term. Therefore, even though NOAA Fisheries expects some low level of non-lethal incidental take to occur due to the action covered by this Opinion, the best scientific and commercial data available are not sufficient to enable NOAA Fisheries to estimate a specific amount of incidental take to the species itself. In instances such as these, NOAA Fisheries designates the expected level of take as "unquantifiable." Based on the information provided by the COE and other available information, NOAA Fisheries anticipates that an unquantifiable amount of incidental take could occur as a result of the action covered by this Opinion. The extent of the take is limited to the project area.

2.2 Reasonable and Prudent Measures

NOAA Fisheries believes that the following reasonable and prudent measures are necessary and appropriate to minimize take of the above species. Minimizing the amount and extent of take is essential to avoid jeopardy to the listed species.

- 1. Minimize incidental take from general construction by excluding unauthorized permit actions and applying permit conditions that avoid or minimize adverse effects to riparian and aquatic systems.
- 2. Monitor the effectiveness of the proposed experimental fish passage structure to insure the structure is functioning properly.
- 3. Monitor the effectiveness of the proposed conservation measures in minimizing incidental take and report to NOAA Fisheries.

2.3 Terms and Conditions

In order to be exempt from the prohibitions of section 9 of the ESA, the COE must ensure compliance with the following terms and conditions, which implement the reasonable and prudent measures described above. These terms and conditions are non-discretionary.

- 1. To implement Reasonable and Prudent Measure #1 (general conditions for construction, operation and maintenance), the Corps shall ensure that:
 - a. <u>Timing of in-water work</u>. Work for the proposed project will be completed by October 15.
 - b. <u>Cessation of work</u>. Project operations will cease under high flow conditions that may result in inundation of the project area, except for efforts to avoid or minimize resource damage.
 - c. <u>Fish screens</u>. All water intakes used for a project, including pumps used to isolate an in-water work area, will have a fish screen installed, operated and maintained according to NOAA Fisheries' fish screen criteria.¹
 - d. <u>Fish passage</u>. Passage will be provided for any adult or juvenile salmonid species present in the project area during construction, and after construction for the life of the project. Upstream passage is not required during construction if it did not previously exist.
 - e. <u>Pollution and Erosion Control Plan</u>. A Pollution and Erosion Control Plan will be prepared and carried out to prevent pollution related to construction operations.

¹ National Marine Fisheries Service, *Juvenile Fish Screen Criteria* (revised February 16, 1995) and *Addendum: Juvenile Fish Screen Criteria for Pump Intakes* (May 9, 1996) (guidelines and criteria for migrant fish passage facilities, and new pump intakes and existing inadequate pump intake screens) (http://www.nwr.noaa.gov/lhydrop/hydroweb/ferc.htm).

The plan must be available for inspection on request by Corps or NOAA Fisheries.

- i. <u>Plan Contents</u>. The Pollution and Erosion Control Plan must contain the pertinent elements listed below, and meet requirements of all applicable laws and regulations.
 - (1) Practices to prevent erosion and sedimentation associated with access roads, stream crossings, construction sites, borrow pit operations, haul roads, equipment and material storage sites, fueling operations and staging areas.
 - (2) Practices to confine, remove and dispose of excess concrete, cement and other mortars or bonding agents, including measures for washout facilities.
 - (3) A description of any hazardous products or materials that will be used for the project, including procedures for inventory, storage, handling, and monitoring.
 - (4) A spill containment and control plan with notification procedures, specific clean up and disposal instructions for different products, quick response containment and clean up measures that will be available on the site, proposed methods for disposal of spilled materials, and employee training for spill containment.
 - (5) Practices to prevent construction debris from dropping into any stream or water body, and to remove any material that does drop with a minimum disturbance to the streambed and water quality.
- ii. <u>Inspection of erosion controls</u>. During construction, all erosion controls must be inspected daily during the rainy season and weekly during the dry season to ensure they are working adequately.²
 - (1) If inspection shows that the erosion controls are ineffective, work crews must be mobilized immediately to make repairs, install replacements, or install additional controls as necessary.
 - (2) Sediment must be removed from erosion controls once it has reached 1/3 of the exposed height of the control.
- f. <u>Construction discharge water</u>. All discharge water created by construction (*e.g.*, concrete washout, pumping for work area isolation, vehicle wash water) will be treated as follows:
 - i. <u>Water quality</u>. Facilities must be designed, built and maintained to collect and treat all construction discharge water using the best available technology applicable to site conditions. The treatment must remove debris, nutrients, sediment, petroleum hydrocarbons, metals and other pollutants likely to be present.
 - ii. <u>Discharge velocity</u>. If construction discharge water is released using an outfall or diffuser port, velocities must not exceed 4 feet per second.

² "Working adequately" means no turbidity plumes are evident during any part of the year.

- iii. <u>Spawning areas, marine submerged vegetation</u>. No construction discharge water may be released within 300 feet upstream of active spawning areas or areas with marine submerged vegetation.
- g. <u>Preconstruction activity</u>. Before significant³ alteration of the project area, the following actions must be completed:
 - i. <u>Marking</u>. Flag the boundaries of clearing limits associated with site access and construction to prevent ground disturbance of critical riparian vegetation, wetlands and other sensitive sites beyond the flagged boundary.
 - ii. <u>Emergency erosion controls</u>. Ensure that the following materials for emergency erosion control are onsite.
 - (1) A supply of sediment control materials (*e.g.*, silt fence, straw bales⁴).
 - (2) An oil absorbing floating boom whenever surface water is present.
 - iii. <u>Temporary erosion controls</u>. All temporary erosion controls must be inplace and appropriately installed downslope of project activity within the riparian area until site restoration is complete.

h. <u>Temporary access roads</u>.

- i. <u>Existing ways</u>. Existing roadways or travel paths must be used whenever possible, unless construction of a new way would result in less habitat take.
- ii. <u>Steep slopes</u>. Temporary roads built mid-slope or on slopes steeper than 30 percent are not authorized.
- iii. <u>Minimizing soil disturbance and compaction</u>. When a new temporary road is necessary within 150-feet⁵ of a stream, water body or wetland, soil disturbance and compaction must be minimized by clearing vegetation to ground level and placing clean gravel over geotextile fabric, unless otherwise approved in writing by NOAA Fisheries.
- i. Heavy Equipment. Use of heavy equipment will be restricted as follows:
 - i. <u>Choice of equipment</u>. When heavy equipment must be used, the equipment selected must have the least adverse effects on the environment (*e.g.*, minimally sized, rubber tired).
 - ii. <u>Vehicle staging</u>. Vehicles must be fueled, operated, maintained and stored as follows:
 - (1) Vehicle staging, cleaning, maintenance, refueling, and fuel storage must take place in a vehicle staging area placed 150-feet or more from any stream, water body or wetland.

^{3 &}quot;Significant" means an effect can be meaningfully measured, detected or evaluated.

⁴ When available, certified weed-free straw or hay bales must be used to prevent introduction of noxious weeds.

⁵ Distances from a stream or water body are measured horizontally from, and perpendicular to, the bankfull elevation, the edge of the channel migration zone, or the edge of any associated wetland, whichever is greater. "Channel migration zone" means the area defined by the lateral extent of likely movement along a stream reach as shown by evidence of active stream channel movement over the past 100 years, e.g., alluvial fans or floodplains formed where the channel gradient decreases, the valley abruptly widens, or at the confluence of larger streams.

- (2) All vehicles operated within 150-feet of any stream, water body or wetland must be inspected daily for fluid leaks before leaving the vehicle staging area. Any leaks detected must be repaired in the vehicle staging area before the vehicle resumes operation.

 Inspections must be documented in a record that is available for review on request by Corps or NOAA Fisheries.
- (3) All equipment operated instream must be cleaned before beginning operations below the bankfull elevation to remove all external oil, grease, dirt, and mud.
- iii. <u>Stationary power equipment</u>. Stationary power equipment (*e.g.*, generators, cranes) operated within 150-feet of any stream, water body or wetland must be diapered to prevent leaks, unless otherwise approved in writing by NOAA Fisheries.
- j. <u>Site preparation</u>. Native materials will be conserved for site restoration.
 - i. If possible, native materials must be left where they are found.
 - ii. Materials that are moved, damaged or destroyed must be replaced with a functional equivalent during site restoration.
 - iii. Any large wood⁶, native vegetation, weed-free topsoil, and native channel material displaced by construction must be stockpiled for use during site restoration.
- k. <u>Isolation of in-water work area</u>. If adult or juvenile fish are reasonably certain to be present, the work area will be well isolated from the active flowing stream using inflatable bags, sandbags, sheet pilings, or similar materials. The work area will also be isolated if in-water work may occur within 300-feet upstream of spawning habitats.
- 1. <u>Capture and release</u>. Before and intermittently during pumping to isolate an inwater work area, an attempt must be made to capture and release fish from the isolated area using trapping, seining, electrofishing, or other methods as are prudent to minimize risk of injury.
 - i. A fishery biologist experienced with work area isolation and competent to ensure the safe handling of all ESA-listed fish must conduct or supervise the entire capture and release operation.
 - ii. If electrofishing equipment is used to capture fish, the capture team must comply with NOAA Fisheries' electrofishing guidelines.⁷
 - iii. The capture team must handle ESA-listed fish with extreme care, keeping fish in water to the maximum extent possible during seining and transfer procedures to prevent the added stress of out-of-water handling.

⁶ For purposes of this Opinion only, "large wood" means a tree, log, or rootwad big enough to dissipate stream energy associated with high flows, capture bedload, stabilize streambanks, influence channel characteristics, and otherwise support aquatic habitat function, given the slope and bankfull width of the stream in which the wood occurs. See, Oregon Department of Forestry and Oregon Department of Fish and Wildlife, *A Guide to Placing Large Wood in Streams*, May 1995 (www.odf.state.or.us/FP/RefLibrary/LargeWoodPlacemntGuide5-95.doc).

National Marine Fisheries Service, Backpack Electrofishing Guidelines (December 1998) (http://www.nwr.noaa.gov/1salmon/salmesa/pubs/electrog.pdf).

- iv. Captured fish must be released as near as possible to capture sites.
- v. ESA-listed fish may not be transferred to anyone except NOAA Fisheries personnel, unless otherwise approved in writing by NOAA Fisheries.
- vi. Other Federal, state, and local permits necessary to conduct the capture and release activity must be obtained.
- vii. NOAA Fisheries or its designated representative must be allowed to accompany the capture team during the capture and release activity, and must be allowed to inspect the team's capture and release records and facilities.
- m. <u>Earthwork</u>. Earthwork (including drilling, excavation, dredging, filling and compacting) will be completed as quickly as possible.
 - i. <u>Site stabilization</u>. All disturbed areas must be stabilized, including obliteration of temporary roads, within 12 hours of any break in work unless construction will resume work within 7 days between June 1 and September 30, or within two days between October 1 and May 31.
 - ii. <u>Source of materials</u>. Boulders, rock, woody materials and other natural construction materials used for the project must be obtained outside the riparian area.
- n. <u>Site restoration</u>. All streambanks, soils and vegetation disturbed by the project are cleaned up and restored as follows:
 - i. <u>Restoration goal</u>. The goal of site restoration is renewal of habitat access, water quality, production of habitat elements (such as large woody debris), channel conditions, flows, watershed conditions and other ecosystem processes that form and maintain productive fish habitats.
 - ii. <u>Streambank shaping</u>. Damaged streambanks must be restored to a natural slope, pattern and profile suitable for establishment of permanent woody vegetation.
 - iii. Revegetation. Areas requiring revegetation must be replanted before the first April 15 following construction with a diverse assemblage of species that are native to the project area or region, including grasses, forbs, shrubs and trees.
 - iv. <u>Pesticides</u>. No pesticide application is allowed, although mechanical or other methods may be used to control weeds and unwanted vegetation.
 - v. <u>Fertilizer</u>. No surface application of fertilizer may occur within 50 feet of any stream channel.
 - vi. <u>Fencing</u>. Fencing must be installed as necessary to prevent access to revegetated sites by livestock or unauthorized persons.
- 2. To implement Reasonable and Prudent Measure #2 (monitoring experimental design structure), the Corps shall ensure that:
 - a. <u>Post-Construction operations.</u> The goal is to determine that the design is functioning properly by providing the following:

- i. Verification that post-construction depths are consistent with the design depths.
- ii. Water surface profile.
- iii. Inspection of weirs and verification that there are no cracks or leaks.
- iv. Site survey to determine if fish are present in the action area and if fish are able to navigate and pass the structure. This survey shall be conducted during the migration season to provide accurate results.
- b. <u>Maintenance of structure</u>. To provide a properly functioning structure, a maintenance schedule will be required. The structure shall be inspected and debris removed four times per year: prior to migration season, after the first significant freshet of migration season, and two additional inspections outside of the migration season. Additionally, when large debris is observed in the structure while salmonids are present it will be cleared as soon as possible.
- 3. To implement Reasonable and Prudent Measure #3 (monitoring), the Corps shall:
 - a. Submit a monitoring report within 120 days of project completion describing the success meeting permit conditions. The monitoring report will include the following information:
 - i. Project identification
 - (1) Permittee name, permit number, and project name.
 - (2) Category of activity
 - (3) Project location, including any compensatory mitigation site(s), by 5th field HUC and by latitude and longitude as determined from the appropriate USGS 7-minute quadrangle map
 - (4) Corps contact person.
 - (5) Starting and ending dates for work completed
 - ii. <u>Narrative assessment</u>. A narrative assessment of the project's effects on natural stream function.
 - iii. <u>Photo documentation</u>. Photo of habitat conditions at the project and any compensation site(s), before, during, and after project completion.⁸
 - (1) Include general views and close-ups showing details of the project and project area, including pre and post construction.
 - (2) Label each photo with date, time, project name, photographer's name, and a comment about the subject.
 - iv. Other data. Additional project-specific data, as appropriate for individual projects.
 - (1) <u>Work cessation</u>. Dates work cessation was required due to high flows.

⁸ Relevant habitat conditions may include characteristics of channels, eroding and stable streambanks in the project area, riparian vegetation, water quality, flows at base, bankfull and over-bankfull stages, and other visually discernable environmental conditions at the project area, and upstream and downstream of the project.

- (2) <u>Fish screen</u>. Compliance with NOAA Fisheries' fish screen criteria.
- (3) A summary of pollution and erosion control inspections, including any erosion control failure, hazardous material spill, and correction effort.
- (4) <u>Site preparation</u>.
 - (a) Total cleared area riparian and upland.
 - (b) Total new impervious area.
- (5) <u>Isolation of in-water work area, capture and release</u>.
 - (a) Supervisory fish biologist name and address.
 - (b) Methods of work area isolation and take minimization.
 - (c) Stream conditions before, during and within one week after completion of work area isolation.
 - (d) Means of fish capture.
 - (e) Number of fish captured by species.
 - (f) Location and condition of all fish released.
 - (g) Any incidence of observed injury or mortality.
- (6) <u>Site restoration</u>.
 - (a) Finished grade slopes and elevations.
 - (b) Planting composition and density.
 - (c) A five-year plan to:
 - (i) Inspect and, if necessary, replace failed plantings to achieve 100% survival at the end of the first year, and 80% survival or 80% coverage after five years (including both plantings and natural recruitment).
 - (ii) Control invasive non-native vegetation.
 - (iii) Protect plantings from wildlife damage and other harm
- v. Submit monitoring reports to:

NOAA Fisheries

Oregon Habitat Branch, Habitat Conservation Division

Attn: 2002/00857

525 NE Oregon Street, Suite 500

Portland, Oregon 97232-2778

vi. If a dead, injured, or sick endangered or threatened species specimen is located, initial notification must be made to the NOAA Fisheries Law Enforcement Office, located at Vancouver Field Office, 600 Maritime, Suite 130, Vancouver, Washington 98661; telephone: 360/418-4246. Care should be taken in handling sick or injured specimens to ensure effective treatment and care or the handling of dead specimens to preserve biological material in the best possible state for later analysis of cause of death. In conjunction with the care of sick or injured endangered and

threatened species or preservation of biological materials from a dead animal, the finder has the responsibility to carry out instructions provided by Law Enforcement to ensure that evidence intrinsic to the specimen is not disturbed.

3. MAGNUSON-STEVENS ACT

3.1 Magnuson-Stevens Fishery Conservation and Management Act

The Magnuson-Stevens Fishery Conservation and Management Act (MSA), as amended by the Sustainable Fisheries Act of 1996 (Public Law 104-267), established procedures designed to identify, conserve, and enhance essential fish habitat (EFH) for those species regulated under a Federal fisheries management plan. Pursuant to the MSA:

- Federal agencies must consult with NOAA Fisheries on all actions or proposed actions authorized, funded, or undertaken by the agency that may adversely affect EFH (§305(b)(2)).
- NOAA Fisheries must provide conservation recommendations for any Federal or state action that would adversely affect EFH (§305(b)(4)(A)).
- Federal agencies must provide a detailed response in writing to NOAA Fisheries within 30 days after receiving EFH conservation recommendations. The response must include a description of measures proposed by the agency for avoiding, mitigating, or offsetting the impact of the activity on EFH. In the case of a response that is inconsistent with NOAA Fisheries EFH conservation recommendations, the federal agency must explain its reasons for not following the recommendations (§305(b)(4)(B)).

EFH means those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity (MSA §3). For the purpose of interpreting this definition of EFH, "waters" include aquatic areas and their associated physical, chemical, and biological properties that are used by fish and may include aquatic areas historically used by fish where appropriate. "Substrate" includes sediment, hard bottom, structures underlying the waters, and associated biological communities. "Necessary" means the habitat required to support a sustainable fishery and the managed species' contribution to a healthy ecosystem; and "spawning, breeding, feeding, or growth to maturity" covers a species' full life cycle (50 CFR 600.10). Adverse effect means any impact which reduces quality and/or quantity of EFH, and may include direct (e.g., contamination or physical disruption), indirect (e.g., loss of prey or reduction in species fecundity), site-specific or habitat-wide impacts, including individual, cumulative, or synergistic consequences of actions (50 CFR 600.810).

EFH consultation with NOAA Fisheries is required regarding any Federal agency action that may adversely affect EFH, including actions that occur outside EFH, such as certain upstream and upslope activities.

The objectives of this EFH consultation are to determine whether the proposed action would adversely affect designated EFH and to recommend conservation measures to avoid, minimize, or otherwise offset potential adverse effects to EFH.

3.2 Identification of EFH

Pursuant to the MSA the Pacific Fisheries Management Council (PFMC) has designated EFH for three species of federally-managed Pacific salmon: Chinook (*Oncorhynchus tshawytscha*), coho (*O. kisutch*), and Puget Sound pink salmon (*O. gorbuscha*) (PFMC 1999). Freshwater EFH for Pacific salmon includes all those streams, lakes, ponds, wetlands, and other water bodies currently, or historically accessible to salmon in Washington, Oregon, Idaho, and California, except areas upstream of certain impassable man-made barriers (as identified by the PFMC 1999), and longstanding, naturally-impassable barriers (*i.e.*, natural waterfalls in existence for several hundred years). Detailed descriptions and identifications of EFH for salmon are found in Appendix A to Amendment 14 to the Pacific Coast Salmon Plan (PFMC 1999). Assessment of potential adverse effects to these species' EFH from the proposed action is based, in part, on this information.

3.3 Proposed Action

The proposed action is detailed above in section 1.2 of this document. The action area includes Beaver Creek, a tributary of the Sandy River, near Columbia River RM 120. This area has been designated as EFH for various life stages of chinook salmon and coho salmon.

3.4 Effects of Proposed Action

As described in detail in section 1.5 of this document, the proposed activity may result in short-term adverse effects to a variety of parameters. These adverse effects are turbidity from construction, and disturbance of riparian vegetation.

3.5 Conclusion

NOAA Fisheries believes that the proposed action may adversely affect the EFH for chinook salmon and coho salmon.

3.6 EFH Conservation Recommendations

Pursuant to Section 305(b)(4)(A) of the MSA, NOAA Fisheries is required to provide EFH conservation recommendations to federal agencies regarding actions which may adversely affect EFH. While NOAA Fisheries understands that the conservation measures described in the BA will be implemented by the COE, it does not believe that these measures are sufficient to address the adverse impacts to EFH described above. However, the terms and conditions outlined in section 2.3 are generally applicable to designated EFH for chinook salmon and coho salmon and

address these adverse effects. Consequently, NOAA fisheries incorporates them here as EFH conservation recommendations.

3.7 Statutory Response Requirement

Pursuant to the MSA (§305(b)(4)(B)) and 50 CFR 600.920(j), Federal agencies are required to provide a detailed written response to NOAA Fisheries' EFH conservation recommendations within 30 days of receipt of these recommendations. The response must include a description of measures proposed to avoid, mitigate, or offset the adverse impacts of the activity on EFH. In the case of a response that is inconsistent with the EFH conservation recommendations, the response must explain the reasons for not following the recommendations, including the scientific justification for any disagreements over the anticipated effects of the proposed action and the measures needed to avoid, minimize, mitigate, or offset such effects.

3.8 Supplemental Consultation

The COE must reinitiate EFH consultation with NOAA Fisheries if the proposed action is substantially revised in a manner that may adversely affect EFH, or if new information becomes available that affects the basis for NOAA Fisheries' EFH conservation recommendations (50 CFR 600.920(k)).

4. LITERATURE CITED

- Berg, L. and T.G. Northcote. 1985. Changes In Territorial, Gill-Flaring, and Feeding Behavior in Juvenile CohoSalmon (Oncorhynchus kisutch) Following Short-Term Pulses of Suspended Sediment. Canadian Journal of Fisheries and Aquatic Sciences 42: 1410-1417.
- Birtwell, I. K., G. F. Hartman, B. Anderson, D. J. McLeay, and J. G. Malick. 1984. A Brief Investigation of Arctic Grayling (Thymallus arcticus) and Aquatic Invertebrates in the Minto Creek Drainage, Mayo, Yukon Territory: An Area Subjected to Placer Mining. Canadian Technical Report of Fisheries and Aquatic Sciences 1287.
- Bjornn, T.C., and D.W. Reiser. 1991. Habitat requirements of salmonids in streams. Pages 83-138 *in* W.R. Meehan, ed. Influences of forest and rangeland management on salmonid fishes and their habitats. American Fisheries Society Special Publication 19:83-138.
- Burgner, R.L. 1991. Life history of sockeye salmon (*Oncorhynchus nerka*). Pages 1-117 *In:* Groot, C. and L. Margolis (eds.). 1991. Pacific salmon life histories. Vancouver, British Columbia: University of British Columbia Press.
- Busby, P., S. Grabowski, R. Iwamoto, C. Mahnken, G. Matthews, M. Schiewe, T. Wainwright, R. Waples, J. Williams, C. Wingert, and R. Reisenbichler. 1995. Review of the status of steelhead (*Oncorhynchus mykiss*) from Washington, Idaho, Oregon, and California under the U.S. Endangered Species Act. 102 p. plus 3 appendices.
- Busby, P.J., T.C. Wainwright, G.J. Bryant, L.J. Lierheimer, R.S. Waples, F.W. Waknitz, and I.V. Lagomarsino. 1996. Status review of west coast steelhead from Washington, Idaho, Oregon, and California. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-NWFSC-27, 261p.
- Casillas, E., L. Crockett, Y. deReynier, J. Glock, M. Helvey, B. Meyer, C. Schmitt, M. Yoklavich, A. Bailey, B. Chao, B. Johnson, and T. Pepperell, 1988. Essential Fish Habitat West Coast Groundfish Appendix. National Marine Fisheries Service. Seattle, Washington. 778 p.
- Dawley, E.M., R.D. Ledgerwood, T.H. Blahm, C.W. Sims, J.T. Durkin, R.A. Kirn, A.E. Rankis, G.E. Monan and F.J. Ossiander. 1986. Migrational Characteristics, Biological Observations, and Relative Survival of Juvenile Salmonids Entering the Columbia River Estuary. Final Report of Research. Bonneville Power Administration Contract DE-AI79-84BP39652. Project No. 81-102. 256 p.
- DeHart, M. 2001. Fish Passage Center of the Columbia Basin Fish & Wildlife Authority 2000 Annual Report (Draft). March. 108 pp. plus Appendices.

- DeVore, P. W., L. T. Brooke, and W. A. Swenson. 1980. "The Effects of Red Clay Turbidity and Sedimentation on Aquatic Life In the Nemadji River System. Impact of Nonpoint Pollution Control on Western Lake Superior." S. C. Andrews, R. G. Christensen, and C. D. Wilson. Washington, D.C., U.S. Environmental Protection Agency. EPA Report 905/9-79-002-B.
- Gregory, R. S., and C. D. Levings. 1998. "Turbidity Reduces Predation on Migrating Juvenile Pacific Salmon." Transactions of the American Fisheries Society 127: 275-285.
- Gregory, R.S. 1993. Effect of turbidity on the predator avoidance behavior of juvenile chinook salmon (Oncorhynchus tshawytcha). Canadian J. Fish. Aquatic Sciences 50:241-246.
- Gregory, R. S. 1988. Effects of Turbidity on benthic foraging and predation risk in juvenile chinook salmon. Pages 64-73 *In:* C. A. Simenstad (ed.) Effects of dredging on anadromous Pacific coast fishes. Washington Sea Grant Program. Washington State University. Seattle, Washington.
- Gurnell, A.M., 1995, Sediment yield from Alpine glacier basins, in Foster, I.D.L., Gurnell, A.M., and Webb, B.W., eds., Sediment and water quality in river catchments: John Wiley & Sons, p. 407-435.
- Healey, M.C. 1991. Life history of chinook salmon (*Oncorhynchus tshawytscha*). Pages 311-393 *In:* Groot, C. and L. Margolis (eds.). 1991. Pacific salmon life histories. Vancouver, British Columbia: University of British Columbia Press.
- Johnson, O.W., W.S. Grant, R.G. Cope, K. Neely, F.W. Waknitz, and R.S. Waples. 1997. Status review of chum salmon from Washington, Oregon, and California. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-32, 280 p.
- Lloyd, D. S. 1987. Turbidity as a Water Quality Standard for Salmonid Habitats in Alaska. North American Journal of Fisheries Management 7:34-45.
- Lloyd, D. S., J. P. Koenings, and J. D. LaPerriere. 1987. "Effects of Turbidity in Fresh Waters of Alaska." North American Journal of Fisheries Management 7: 18-33.
- Matthews, G.M. and R.S. Waples. 1991. Status review for Snake River spring and summer chinook salmon. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-F/NWC-200, 75 p.
- McLeay, D. J., G. L. Ennis, I. K. Birtwell, and G. F. Hartman. 1984. "Effects On Arctic Grayling (Thymallus arcticus) of Prolonged Exposure to Yukon Placer Mining Sediment: A Laboratory Study." Canadian Technical Report of Fisheries and Aquatic Sciences 1241.

- McLeay, D. J., I. K. Birtwell, G. F. Hartman, and G. L. Ennis. 1987. "Responses of Arctic Grayling (Thymallus arcticus) To Acute and Prolonged Exposure to Yukon Placer Mining Sediment." Canadian Journal of Fisheries and Aquatic Sciences 44: 658-673.
- Myers, J.M., R.G. Kope, G.J. Bryant, D. Teel, L.J. Lierheimer, T.C. Wainwright, W.S. Grant, F.W. Waknitz, K. Neely, S.T. Lindley, and R.S. Waples. 1998. Status review of chinook salmon from Washington, Idaho, Oregon, and California. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-35, 443 p.
- Newcombe, C. P., and D. D. MacDonald. 1991. "Effects of Suspended Sediments on Aquatic Ecosystems." North American Journal of Fisheries Management 11: 72-82.
- NMFS. Biological Opinion: Reinitiation of Consultation on Operation of the Federal Columbia River Power System, Including the Juvenile Fish Transportation Program, and 19 Bureau of Reclamation Projects in the Columbia Basin. Web site: http://www.nwr.noaa.gov/1hydrop/hydroweb/docs/Final/2000Biop.html. December 21, 2000.
- NMFS (National Marine Fisheries Service). 2002a. Biological Opinion on the Collection, Rearing, and Release of Salmonids Associated with Artificial Propagation Programs in the Middle Columbia River Steelhead Evolutionarily Significant Unit (ESU). NMFS, Protected Resources Division, Portland, Oregon. (February 14, 2002)
- PFMC (Pacific Fishery Management Council), 1998a. Final Environmental Assessment/Regulatory Review for Amendment 11 to the Pacific Coast Groundfish Fishery Management Plan. October 1998.
- PFMC (Pacific Fishery Management Council), 1998b. The Coastal Pelagic Species Fishery Management Plan: Amendment 8. Portland, Oregon.
- PFMC (Pacific Fishery Management Council). 1999. Amendment 14 to the Pacific Coast Salmon Plan. Appendix A: Description and Identification of Essential Fish Habitat, Adverse Impacts and Recommended Conservation Measures for Salmon. Portland, Oregon.
- Redding, J. M., C. B. Schreck, and F. H. Everest. 1987. "Physiological Effects on Coho Salmon and Steelhead of Exposure to Suspended Solids." Transactions of the American Fisheries Society 116: 737-744.
- Salo, E.O. 1991. Life history of chum salmon (*Oncorhynchus keta*). Pages 231-309 *In:* Groot,C. and L. Margolis (eds.). 1991. Pacific salmon life histories. Vancouver, BritishColumbia: University of British Columbia Press.
- Scannell, P.O. 1988. Effects of Elevated Sediment Levels from Placer Mining on Survival and

- Behavior of Immature Arctic Grayling. Alaska Cooperative Fishery Unit, University of Alaska. Unit Contribution 27.
- Schmetterling, D.A., C.G. Clancy and T.M. Brandt. 2001. Effects of riprap bank reinforcement on stream salmonids in the western United States. Fisheries 26(7):6-13.
- Servizi, J. A., and Martens, D. W. 1991. "Effects of Temperature, Season, and Fish Size on Acute Lethality of Suspended Sediments to Coho Salmon". Canadian Journal of Fisheries and Aquatic Sciences 49:1389-1395.
- Sigler, J. W., T. C. Bjornn, and F. H. Everest. 1984. "Effects of Chronic Turbidity on Density and Growth of Steelheads and Coho Salmon." Transactions of the American Fisheries Society 113: 142-150. 1984.
- Spence, B. C., G. A. Lomnicky, R. M. Hughes, and R. P. Novitzki. 1996. An ecosystem approach to salmonid conservation. ManTech Environmental Research Services, Inc., Corvallis, Oregon, to National Marine Fisheries Service, Habitat Conservation Division, Portland, Oregon (Project TR-4501-96-6057).
- USACE (United States Army Corps of Engineers). 1977. Shore Protection Manual. 3rd ed. Coastal Engineering Research Center. Fort Belvoir, Va.
- Waples, R.S., O.W. Johnson, and R.P. Jones, Jr. 1991a. Status review for Snake River sockeye salmon. U.S. Dept. Commer., NOAA Tech. Memo. NMFS F/NWC-195. 23 p.
- Waples, R.S., R.P. Jones, Jr., B.R. Beckman, and G.A. Swan. 1991b. Status review for Snake River fall chinook salmon. U.S. Dept. Commer., NOAA Tech. Memo. NMFS F/NWC-201. 73 p.
- Whitman, R.P., T.P. Quinn and E.L. Brannon. 1982. Influence of suspended volcanic ash on homing behavior of adult chinook salmon. Trans. Am. Fish. Soc. 113:142-150.